

BIOGAS UPGRADE,GENERATING DUAL VALUE STREAMS: CO₂ + CH₄

IBD ACCRA, GHANA MARCO VAN DE VEN MARCH, 2013

BIOGAS UPGRADING

- Biogas Sources
- Biogas Usage, Common Practice
- Biogas Upgrading Technology, Haffmans Membrane
- TCO
- Case studies
- Service

BIOGAS UPGRADING - SOURCES

Industries	Process	Basic nutrient for the anaerobic fermentation	Ratio CH ₄ / CO ₂
INDUSTRIAL WASTE WATER TREATMENT SYSTEMS, Potable water companies, Water authorities	Waste Water Treatment Plant (WWTP)	Semi-solid organic residues from water & solids (sludge)	65 - 80 % / 20 - 35%
BREWERIES, DISTILLERIES, BioEthanol, Agricultural sector	Mono- fermentation	Agricultural-based materials (corn silage, spent hops, spent grain etc.) 1 ton Spent grain → ~ 122 Nm³ biogas	55% / 45%
Livestock farms	Co-fermentation	Manure (cattle, pig, chicken) mixed with agricultural-based materials	55% / 45%
Compost-processing industry	Decomposition	Fruit-vegetables-garden-based materials	55 - 70% / 30 - 45%

BASIC BIOGAS USAGE – COMMON PRACTICE

- Dirty low caloric gas is burned
- When NO heat is required only 33% energy is put to good use → Low efficiency
- · No buffering capacity
- Combustion gasses are purged: CO₂ is a waste product

BIOGAS UPGRADING TECHNOLOGY - HAFFMANS MEMBRANE

"Green" CO₂ Liquid / Gas

Bio-Methane 97% CH₄

- Biogas is upgraded to clean high caloric gas
- Bio-methane is fed into grid
- High CH₄ yield up to 100 % CH₄ recovery
- Liquid Green CO₂ is product

- \rightarrow CH₄ up to 97%
- → Buffer capacity
- → No loss
- → Extra source of income

BIOGAS UPGRADING TECHNOLOGY

High pressure CO₂ & CH₄ gas

Low pressure CO₂ gas

Membrane

BIOGAS UPGRADING TECHNOLOGY – DUAL REVENUE

PRODUCT 1: BIOMETHANE (CH₄)

- ✓ High CH₄ yield: 100 % CH₄ recovery
- √ No CH₄ slip (emission)
- ✓ High caloric Bio-Methane: CH₄ up to 97%
- √ No use of chemicals

PRODUCT 2: CARBON DIOXIDE (CO₂)

- ✓ Extra revenue: Food grade CO₂
- ✓ High CO₂ purity: Meets ISBT specs
- ✓ CO₂ from biogas = Green = short-cycle CO₂
- ✓ Low CO₂ emission

BIOGAS UPGRADING TECHNOLOGY

BIOGAS UPGRADING TECHNOLOGY - FLOW

BIOGAS UPGRADING TECHNOLOGY - DIAGRAM

TCO BIOGAS UPGRADING – DUAL REVENUE

TCO PER Nm³ BIOMETHANE

- Biogas upgrading : 0.080- 0.095 EUR / Nm³ Bio Methane
- "Free" food grade CO₂ for consumption / export purposes

TCO PER TON CO₂

- CO₂ recovery : ~ 100 EUR / ton liquid CO₂
- "Free" Bio Methane to utilize

TCO values based on:

- Biogas upgrade installation > 1.000 Nm³ / hr.
- Electrical power 0.06 EUR / kWh
- Amortization 10 years at interest rate 6%

BIOGAS UPGRADING CASE STUDY - 300 NM³/H (BEVERWIJK)

Plant Capacity	300 Nm³ Biogas/hour → 183 Nm³ Bio-Methane/hour	
Biogas source	Wastewater treatment plant	
Ratio: CH ₄ / CO ₂	55% / 45%	
Operating Pressure	8 barg	
BioMethane produced	1,47 Million Nm ³ / year (operation ~8000hrs / year)	
CH ₄ Loss	None	
CO ₂ Recovered	1,68 Million kg / year	
CO ₂ Usage	INTERNAL PROCESS : pH correction of treated water → OPEX savings	
Injection into grid	According to Dutch Gas Grid Specifications	

BIOGAS UPGRADING CASE STUDY - 350 NM³/H (WITTEVEEN)

Plant Capacity	350 Nm³ Biogas/hour → 214 Nm³ Bio-Methane/hour
Biogas source	Vegetable-based material (Corn silage, spent hops, spent grain, etc.) Mono-Digestion (consumption per year ~12.000 ton)
Ratio: CH ₄ / CO ₂	55 % / 45 %
Operating Pressure	8 barg
BioMethane produced	1,71 Million Nm ³ / year (operation ~8000hrs / year)
CH ₄ Loss	None
CO ₂ Recovered	1,96 Million kg / year
Injection into grid	According to Dutch Gas Grid Specifications

BIOGAS UPGRADING CASE STUDY - 450 NM³/H (WELL)

Plant Capacity	450 Nm³ Biogas/hour → 275 Nm³ Bio-Methane/hour
Biogas source	Vegetable-based material (Compost-processing industry)
Ratio: CH ₄ / CO ₂	55 % / 45 %
Operating Pressure	8 barg
BioMethane produced	2,20 Million Nm³/ year (operation ~8000hrs / year)
CH ₄ Loss	None
CO ₂ Recovered	2,52 Million kg / year
CO ₂ Usage	EXPORT : Greenhouse / Cooling agent / Dry-ice → EXTRA REVENUE
Injection into grid	According to Dutch Gas Grid Specifications

REFERENCE MANURE/ CO FERMENTATION (SNEEK)

Plant Capacity	350 Nm³ Biogas/hour → 214 Nm³ BioMethane/hour
Biogas source	Manure from Cattle Farm
Ratio: CH ₄ / CO ₂	55 % / 45 %
Operating Pressure	8 barg
BioMethane produced	1,71 Million Nm ³ / year (operation ~8000hrs / year)
CH ₄ Loss	None
CO ₂ Recovered	1,96 Million kg / year
CO ₂ Usage	EXPORT : Greenhouse / Cooling agent / Dry-ice → EXTRA REVENUE
Injection into grid	According to Dutch Gas Grid Specifications

LIQUID CO₂ STORAGE (Well)

SERVICE AT ITS BEST

GLOBAL MODULAR SERVICE SOLUTIONS

- More than 60 years of experience
 - ✓ Audits and assessments
 - √ Laboratory and analysis services
 - √ Gas chromatograph
 - √ Process design and engineering
 - √ Technology supply and turnkey projects
 - ✓ Pentair Academy (training)
 - √ Total lab solutions
 - √ Global service program
- Global service network
- Large installed base

HAFFMANS BIOGAS UPGRADING

- No methane loss
- 2 value streams
 - CH₄
 - Gas to grid
 - CNG / LNG
 - Sustainable / food grade CO₂
- Pentair Haffmans technology
 - 1. Membrane step
 - 2. Cryogenic step
- For all Biogas industries (sources)

THANK YOU FOR YOUR KIND ATTENTION

Marco.vandeven@pentair.com