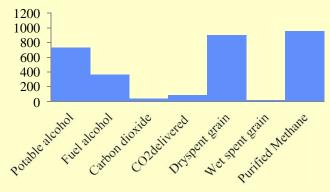

Unconventional Effluent treatment for profit

Dr Edward J Bourke, Diageo Global Beer Technical Centre, Dublin Ireland.

Introduction

All effluent is waste and the first principle of effluent treatment must be waste prevention. Levels of effluent at 0.6-3.5 Kg of COD per Hl represent 3-10% of the raw materials input bill. The methane from a 1M HL brewery theoretically generates 13 Mj /HI beer or roughly10% of the brewery energy bill. Methane must go into suitable generators or steam boilers desulphuration and CO2 removal. The principals of effluent and waste reduction involving reduce, reuse, and recycle could not be better illustrated than in breweries. Interception and reuse of waste materials and energy (Table) before they reach a lower energy state or value gives an improved result. In practice the 80% efficiency of the effluent plant is ambitious because sulphur removal gives problems and the gas must be flared. Shock loads of caustic, sterilant and bottling line lubricant enter the waste system. Overload of sugar and carless release of live yeast combine to reduce efficiency. This poster looks at waste separation as an option for brewery wastes before disposal.



Waste	Application	Advantage	Constraint
Water at 70C	Distillation of alcohol from	Energy cost	Large heat exchangers needed
	waste streams		because of low ΔH
Rainwater	Boiler feed and cooling towers	No deionization treatment	Storage for dry season, efficient
		needed, no bleed off wasted, so	collection, separate drains are
		30% more useful	essential
Waste beer, decants brewhouse	Ferment using secondary yeast,	Reduces BOD before effluent	Needs low grade waste heat to
weakl worts & rinse water	collect carbon dioxide and	tank, recovers carbon dioxide &	distill
	distill off alcohol for fuel	alcohol	
Avoid residual beer on walls of	Rinse down into beer with DAL	Reduces effluent saves 1-3%	Needs DAL supply at top of
vessels	as vessel empties	beer	vessel
Reduce cleaning frequency	Every clean causes effluent	Possible continuous	Sterile operation, sterile gas
		fermentation	
Recover carbon dioxide from	Separate carbon dioxide from	If carbon dioxide is purchased	Existing Carbon Dioxide
methane plant	methane by alkali/	this augments supply	recovery system
	monoethanolamine adsorption		
	and heat off carbon dioxide		
	using low grade heat		
Recover alcohol from	Recirculation washing using a	Reduces COD and saves water	Excise rules on distillation ,
fermentation carbon dioxide	packed tower to increase	but Union system uses liquid	needs low grade waste heat to
	alcohol content in wash water	carbon dioxide to strip flavours	distill
	to 5% ABV and distill	instead of water.	
Ensure cooling towers use	Supply from rain or recovered	Abundant water in wet season	Connect directly to a waste
second use water	water tank		outlet
Mashing in yeast	Add surplus yeast back at the	Recovers valuable components	Flavour
_	mashing stage		
Ferment autolysed yeast	Consume the yeast glycogen,	Recovers extract and reduces	
	distill alcohol	BOD	
Caustic recovery	Regenerates caustic for reuse	Recovers caustic and reduces	Sedimentation can be slow and
		pH of effluent	needs tanks
Careful selection and	Good quality paper labels stay	Makes caustic settling easier	Fibres contribute to BOD
perforation of labels to ensure	intact and are filtered in	for faster recovery	
intact removal	baskets		
Sun-dry label debris and	Calorific content realized	Avoids waste to landfill	
combust as fuel			
Feed Kieselguhr to poultry	Avoids landfill	Feed value of entrained yeast	Use simple transport - drums or
			small tanks
Feed Yeast to poultry	Avoids effluent	Feed value of yeast	Use simple transport
Sun-dry Brewer's Grain and	Calorific content realized	Alternative to animal feeding	Improvement in value when sun
combust as fuel			dried but needs covered store
			and insecticide

Product value €ton

Conclusion

It is vital to separate very high BOD effluents from the waste stream as early as possible and send them as a semi solid waste to animal feed. One ton tanks on trailers or trucks (photo) facilitate smaller animal rearing units. A smaller septic tank or cess pit type digester for very high BOD wastes is a possibility. High BOD waste holding tanks volume reduces by about 50% every three weeks due to ammonia and $\rm CO_2$ losses. Optimum configuration for effluent economies depends on generators for warm water, old or spare fermentation capacity. Super treatment may even allow release to a watercourse instead of a sewer.