

Serial Repitching and Genetic Variation In Brewing Yeast Populations

Chris Powell
University of Nottingham, UK

Overview

- Origins of brewing yeast cultures
- The yeast genome and fermentation performance
 - The role of yeast
 - Using the 'correct' yeast
- Handling of brewing yeast slurries
 - Use of brewing cultures
 - Drivers for variation/selection
- Genome stability, selection of populations and genetic change in brewing cultures

Genetic origins of brewing yeast strains

- Brewing yeast strains selected over many years for desirable fermentation characteristics
- Ale strains are diverse
 - Evolved since Egyptian times from potentially multiple sources
 - •Polyploid Saccharomyces cerevisiae
- Lager strains more closely related
 - •Originate from 1 or 2 sources
 - •Saaz/Frohberg (Dunn and Sherlock, 2008)
 - •Aneuploid Saccharomyces pastorianus

The significance of the yeast genome to fermentation

- Genetic make-up of yeast determines
 - Interaction between yeast and environment
 - Fermentation characteristics
 - Fermentation rate
 - Alcohol production
- Strain dependent flavors
 - Metabolism
 - Uptake of nutrients/nutritional requirements
 - Specific genes (e.g. POF+ yeast)
- It is important to utilize a good yeast strain

What is a 'good' yeast strain

- A good brewers yeast strain should
 - Utilize sugars quickly and efficiently
 - Consistently yield a product with typical and desired characteristics
 - Specific flavors
 - Alcohol yield
 - Flocculate adequately
 - · Stress resistant

What is a 'good' yeast strain

- A good brewers yeast strain should
 - Utilize sugars quickly and efficiently
 - Consistently yield a product with typical and desired characteristics
 - Specific flavors
 - · Alcohol yield
 - Flocculate adequately
 - Stress resistant
 - Genetically stable

Types of brewing yeast mutation

- Strain diversity has been encouraged within the brewing industry
 - However, genetic stability is an increasingly desirable quality
- Mutations can arise during the process
 - Nuclear and/or mitochondrial
- Variety of effects
 - Changes to flocculation
 - Altered sugar uptake rates
 - Loss of ability to ferment maltotriose
 - Inappropriate flavor production (diacetyl reduction)

Why do yeast mutations occur?

Stress	References	
Random changes during division	Many references	
Ethanol	Bandas and Zakharov, 1980; Jimenez and Benitez, 1997; Chi and Arneborg, 1999; Gasent-Ramirez, 1999	
Hydrostatic pressure	Rosin and Zimmerman, 1977a; 1977b	
Temperature stress	Jenkins <i>et al</i> , 2001; 2003	
Starvation/nutrient limitation	Adams <i>et al</i> , 1985; 1982	

Stresses associated with brewery fermentations

Yeast fermentation

- During fermentation the yeast population divides ~3 times
- CO₂ production maintains yeast in suspension
- Towards end fermentation CO₂
 production slows, vessel is chilled and
 yeast collects in the cone
- Yeast remains in the cone until fermentation is complete
 - Sugar utilization
 - Diacetyl reduction

Brewery yeast life cycle – Serial repitching of cultures

Stresses associated with brewery fermentations

Significance to yeast handling

- Brewers yeast is unique as it is recycled
 - Number of repitchings varies from strain/strain product/product
- What is the optimum number of repitchings?
 - Why can some strains be recycled more often than others?
 - Do certain strains undergo genetic change more rapidly

than others?

Yeast mutation detection by giant colony analysis

What are the effects of serial repitching on brewing yeast cultures

- Serial repitching can influence yeast viability and vitality
 - Such changes may not be permanent
- Genetic changes in asexual populations are usually irreversible
 - Muller's ratchet
- Formation of genetic variants
 - Most genetic change yields inferior cells which are outcompeted
 - Some mutations can lead to new individuals which can compete or co-exist within the population

Serial Repitching and Yeast Mutation

Methods for identifying mutants

- Analysis of fermentation characteristics
 - Physiological tests
 - Phenotype assessment
- Large scale changes to DNA
 - Chromosome analysis by karyotyping
 - Identification of CLP's (Chromosome Length Polymorphisms)
- Small changes to DNA
 - Analysis of location/frequency of transposons by RFLP
 - Characterisation of specific or repeated sequences
 - Inter-delta sequences, Microsatellites/minisatellites
 - Analysis of mtDNA by RFLP

Identifying mutants during repitching of an ale yeast

- Regularly noticed 'strange' fermentation patterns in 'older' yeast cultures
- Altered flocculation characteristics
 - One of the most common mutations observed in brewers yeast slurries
- Altered Ty RFLP profile was observed

Generation of yeast

Analysis of yeast transposon 1 by RFLP

Analysis of change during extended repitching of an ale yeast

- Yeast serially repitched more than 100 times compared to original stocks
 - No change in fermentation performance/flocculation

Analysis of yeast transposon 1 using 3 different restriction enzymes

Analysis of change during extended repitching of an ale yeast

- Yeast serially repitched more than 100 times compared to original stocks
 - No change in fermentation performance/flocculation
 - No change to yeast transposons
 - No change in inter-delta sequences
 - No change in karyotype
- Some yeast strains are particularly stable over time

Analysis of yeast transposon 1 using 3 different restriction enzymes

Changes to mtDNA during lager yeast recycling

- Brewing yeast strains serially repitched for 20 generations
 - Artificial wort environment with ethanol (5%)
- Analyzed for genomic and mtDNA integrity
- One strain exhibited a significant number of petites and mtDNA change after 10-15 generations

Petites	Strain 1	Strain 2	Strain 3	Strain 4
G0	<0.1%	<0.1%	<0.1%	<0.1%
G5	<0.1%	<0.1%	1%	<0.1%
G10	<0.1%	<0.1%	<0.1%	<0.1%
G15	7.2%	<0.1%	<0.1%	<0.1%
G20	34.8%	<0.1%	2.4%	0.7%

Strain 1 mtDNA RFLP

Simple Analysis of Yeast Innate Genetic Stability

Genetic stability trait analysis by karyotyping

DNA Ladder

10 colonies of an S. cerevisiae yeast strain showing genetic variability in chromosome profiles (CLP's) DNA Ladder

10 colonies of an *S. cerevisiae* yeast strain showing identical chromosome profiles

Chromosome Rearrangements

- Genome 'Hot Spots'
 - DNA repeat sequences such as Ty elements and minisatellites may act as sites of chromosomal crossover
 - In wine yeast variants, >100 genomic regions have been identified which induce CLP's (Infante et al, 2003)
 - Recombination sites common to both wine and beer strains have been identified (Bond et al, 2004)
- There is still much unknown about brewing yeast hot spots
 - Possibly linked to flocculation genes
 - Other genes associated with fermentation
 - Sugar transport genes HXT6/7

Why do Changes Arise and Accumulate During Serial Repitching?

The 'cone environment'

- Towards the end of the fermentation yeast settles into the cone of the vessel
 - Time at which yeast separates is strain dependent
 - Can occur relatively early during fermentation
 - Cone is typically cooled to ~4°C
 - Yeast in the cone is considered to be 'dormant'
 - Conditions within the cone are considered to be stable
 - What are the environmental conditions within the cone?

Temperature in the cone

Alcohol in the cone

pH in the cone

Yeast flocculation potential

Petite cells in the cone

Jenkins et al, 2009

The 'cone environment'

- The cone is not a constant environment
 - Alcohol
 - pH
 - Temperature
- Yeast within the cone is not homogenous
 - Flocculation properties
 - Yeast viability
 - Yeast size
 - Petites

The significance of cone variation

- Yeast recovery methods may favor selection
 - Increased use of early or 'warm cropping'
- Continual selection of individuals could potentially lead to genetic drift
 - Populations with altered fermentation properties

Conclusions

- Genetic integrity is essential for a yeast culture to function consistently
- Yeast stress during fermentation and yeast handling may contribute towards genetic change
 - Stress resistance properties of the strain may be linked to the frequency of mutation
- Mutation accumulation rate varies between brewing strains
 - May be dependent on intrinsic genetic stability as well as process conditions
- The environment and population dynamics within the vessel cone are not homogenous
 - Selection during cropping may provide a vehicle for genetic change

Acknowledgements

University of Nottingham

Brewing Research Team Thien-Khiem Nguyen

SAB Miller

Katherine Smart

Lallemand Inc.

Dave Bertrand Annick Mercier Andy Diacetis

DSM Food Specialties Sylvie Van Zandycke **Molson Coors UK**

David Quain (Now Red-TS, H/W University)

Miller Coors US

Portland Brewing Co.

Thank You For Your Attention